Three-dimensional flows in slowly varying planar geometries
نویسندگان
چکیده
منابع مشابه
Exact Localization of Planar Acoustic Reflectors in Three-Dimensional Geometries
In this paper we propose a methodology for localizing acoustic planar reflectors in a 3D geometry, using acoustic measurements acquired by a set of microphones. An acoustic source emitting a known signal is placed close to the wall to be identified, and is used for estimating the source-to-microphone impulse responses. In a preliminary step, such estimates are employed for localizing the source...
متن کاملApplication of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کاملAsymmetric flows of viscoelastic fluids in symmetric planar expansion geometries
The flow of viscoelastic liquids with constant shear viscosity through symmetric sudden expansions is studied by numerical means. The geometry considered is planar and the constitutive model follows the modified FENE-CR equation, valid for relative dilute solutions of polymeric fluids. For Newtonian liquids in a 1:3 expansion we predict the result that the flow becomes asymmetric for a Reynolds...
متن کاملTwo-dimensional Euler flows in slowly deforming domains
We consider the evolution of an incompressible two-dimensional perfect fluid as the boundary of its domain is deformed in a prescribed fashion. The flow is taken to be initially steady, and the boundary deformation is assumed to be slow compared to the fluid motion. The Eulerian flow is found to remain approximately steady throughout the evolution. At leading order, the velocity field depends i...
متن کاملFormulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries
A primitive-variable formulation for simulation of time-dependent incompressible flows in cylindrical coordinates is developed. Spectral elements are used to discretise the meridional semi-plane, coupled with Fourier expansions in azimuth. Unlike previous formulations where special distributions of nodal points have been used in the radial direction, the current work adopts standard Gauss–Lobat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2004
ISSN: 1070-6631,1089-7666
DOI: 10.1063/1.1760105